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Arylboronic acids and arylboronate esters are critical intermedi-
ates in organic synthesis, and their roles as elements of functional
materials and as therapeutic agents are emerging.1 Transition-metal
catalysis provides a mild and robust approach to the preparation of
diversely functionalized arylboronate esters that overcomes the
technical limitations and limited functional group tolerance associ-
ated with traditional hard-metalation conditions. Re,2 Rh,3 and Ir4

catalysts for the direct C-H borylation of arenes using tetraalkoxy-
diboron and dialkoxyborane have been developed. Although it is a
powerful technique, direct C-H borylation cannot always provide
the desired regioisomers. Pd-catalyzed borylation is a complemen-
tary tool for the regiospecific conversion of aryl triflates, iodides,
and bromides to the corresponding arylboronate esters.5 Recently,
Buchwald-type ligands have expanded Pd-catalyzed borylation to
aryl chlorides.6 The borylation of aryl mesylates and tosylates has
remained a challenge in this field, although it would greatly expand
the scope of transition-metal-catalyzed borylation. An efficient
solution to this challenge is reported here.

Following an early report that provided two examples of Ni-
catalyzed pinacolborylation,7 our laboratory reported an efficient,
cost-effective Ni-catalyzed borylation using in situ-prepared neo-
pentylglycolborane.8 Ni-catalyzed borylation of aryl iodides and
bromides was successfully paired with sequential Ni-catalyzed8a,b

or complementary one-pot Pd-catalyzed8b cross-coupling for rapid
access to biaryls. Earlier, our laboratory determined the improved
performance of mixed-ligand systems in Ni-catalyzed cross-
coupling.9 Development of mixed-ligand catalytic systems, notably
NiCl2(dppp)/dppf, has expanded the scope of Ni-catalyzed neo-
pentylglycolborylation to aryl chlorides8c and ortho-substituted aryl
halides.

As NiCl2(dppp)/dppf demonstrated superior performance to other
ligand systems for the borylation of less-reactive aryl chloride and
ortho-substituted substrates, we tested its performance in the
borylation of aryl mesylates and tosylates (Table 1). Aryl mesylates
and tosylates are incompatible with single-ligand Ni catalysts for
borylation, and no reports have suggested their applicability in Pd-
catalyzed systems. Once again, it was found that the NiCl2(dppp)/
dppf mixed-ligand system excels in comparison to single-ligand
systems, providing borylation of all substrates tested. However, high
yields were obtained only for phenyl methanesulfonate (entry 1),
2-methanesulfonylnaphthalene (entry 2), and 4-cyanophenyl meth-
anesulfonate (entry 6). The yields obtained for ortho- and para-
substituted aryl mesylates were significantly lower, although
somewhat better yields were observed for meta-substituted aryl
mesylates and tosylates (entries 4, 10, 11, 14, and 15).

Previously, our laboratory utilized Zn as a reductant in Ni-
catalyzed homo- and cross-coupling of aryl mesylates and tosy-
lates.10 Astonishingly, introduction of 2.0 equiv of Zn in the Ni-
catalyzed neopentylglycolborylation of aryl mesylates and tosylates

provided excellent yields. In addition to the enhanced yield, the
reaction time to achieve maximum conversion was dramatically

Table 1. Comparison of NiCl2(dppp)/dppf-Catalyzed
Neopentylglycolborylation of Aryl Mesylates and Tosylates with
and without Zn

a Conversion calculated from GC. b Yield determined by GC. Isolated
yield in parentheses. c Using 2 equiv of Zn powder. d Isolated as the
solid trifluoroborate since the corresponding arylboronate is a liquid.

Published on Web 01/22/2010

10.1021/ja910808x  2010 American Chemical Society1800 9 J. AM. CHEM. SOC. 2010, 132, 1800–1801



reduced from 1-4 days in the absence of Zn to 1-3 h in its
presence (Table 1 and Table ST1 in the Supporting Information).

Other mixed-ligand systems can also mediate effective neopen-
tylglycolborylation of aryl mesylates and tosylates (Table 2), though
longer reaction times are needed to obtain maximum yield. With 5
mol % NiCl2(dppp) and 10 mol % dppf, quantitative borylation of
methyl 4-methanesulfonyloxybenzoate in 1 h was achieved (entry
1). Using 10 mol % PPh3 (entry 2) or PTol3 (entry 3) as the coligand
provided 100 and 97% yield, respectively, after 4 h.

A control experiment was performed in which only Zn, neo-
pentylglycolborane, Et3N, and methyl 4-methanesulfonyloxyben-
zoate were heated in toluene (Table 3, entry 7). Without the Ni
catalyst, no borylation was observed, indicating the role of Zn as
an additive, presumably as a reductant. As expected, subsequent
addition of the Ni catalyst to this system allowed the borylation to
commence (entry 8). Ideally, low catalyst and reductant loadings
are desired. With 5 mol % NiCl2(dppp), 10 mol % dppf, and 2
equiv of Zn, quantitative borylation of methyl 4-methanesulfony-
loxybenzoate was achieved in 1 h (entry 1). Reducing the catalyst
loading level to 3 mol % NiCl2 (dppp) and 6 mol % dppf resulted
in a slower reaction that achieved complete conversion after 4 h

(entry 2). Further reduction in the catalyst loading level to 2 mol
% NiCl2(dppp) and 4 mol % dppf provided quantitative yield only
after 7 h (entry 3). Effective borylation could also be achieved with
reduced Zn levels as low as 0.5 equiv (entries 4-6). However,
decreasing the Zn level gave a corresponding decrease in yield.

The borylation of substrates containing aldehydes, ketones, and
pyridines in the presence of Zn is accompanied by side reactions
and will be reported in a scope and limitations manuscript together
with mechanistic studies.
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Table 2. Catalyst Screening in the Ni-Catalyzed
Neopentylglycolborylation of Aryl Mesylates Using Zn

convna/yieldb (%)

entry catalyst (%) ligand (%) 1 h 2 h 4 h

1 NiCl2(dppp) (5) dppf (10) 100/100 - -
2 NiCl2(dppp) (5) PPh3 (10) 79/79 93/93 100/100
3 NiCl2(dppp) (5) PTol3 (10) 61/61 83/83 97/97

a Conversion calculated from GC. b Yield determined by GC.

Table 3. Optimization of Catalyst and Zn Additive Loading in the
NiCl2(dppp)/dppf-Catalyzed Neopentylglycolborylation of Aryl
Mesylates

convna/yieldb (%)

entry catalyst (%) ligand (%) equiv of Zn 1 h 2 h 4 h 7 h

1 NiCl2(dppp)(5) dppf (10) 2 100/100 - - -
2 NiCl2(dppp)(3) dppf (6) 2 - 95/95 100/100 -
3 NiCl2(dppp)(2) dppf (4) 2 46/46 63/63 86/86 100/100
4 NiCl2(dppp)(5) dppf (10) 1.5 - 100/98 - -
5 NiCl2(dppp)(5) dppf (10) 1 - - 100/95 -
6 NiCl2(dppp)(5) dppf (10) 0.5 - - 100/91 -
7 - - 2 0/0 0/0 0/0 0/0
8 NiCl2(dppp)(5) - 2 - - - 30/30

a Conversion calculated from GC. b Yield determined by GC.
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